
Spacecraft Block Scheduling for NASA’s Deep Space Network

Timothy M. Hackett∗ and Sven G. Bilén†

The Pennsylvania State University, University Park, PA, 16802

Mark D. Johnston‡

Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, 91109

Currently, NASA’s Deep Space Network (DSN) is responsible for uplink to, downlink from,
and/or tracking of dozens of missions for space agencies across the world. The DSN scheduling
process starts about four months prior to the start of the schedule week, a process in which
requirements are defined and then the schedule is created, de-conflicted, andnegotiated over the
next 2–3weekswith a teamofmission representatives. Now scheduled for late 2019, Exploration
Mission 1 (EM-1) will deploy upwards of 12 SmallSat missions that will be served by the DSN.
This will increase the DSN’s actively serviced spacecraft by up to 30%, further increasing the
difficulty of meeting all mission needs via the oversubscribed network. To mitigate their impact
on DSN scheduling, a block scheduling process is proposed for scheduling the SmallSats. Block
scheduling consists of aggregating spacecraft together into larger “pseudo-spacecraft” based
on geometric alignment that then follow the same process as any other DSN mission to receive
segments of track time. These tracks are then decomposed into tracks for individual users
based on their specific requirements. This paper describes a full novel scheduling toolset for
building candidate blocks, evaluating the efficacy of these blocks, and optimal and suboptimal
de-blocking schemes. To demonstrate these developed tools, results from three simulations
are presented: a blocking example with lunar SmallSats, blocking potential in the greater
DSN spacecraft catalog, and opportunistic multiple spacecraft per aperture potential for the
DSN spacecraft catalog. Block scheduling has the potential to reduce overhead and scheduling
resources for the EM-1 SmallSats while also providing them with a better means to meet their
mission requirements.

I. Nomenclature

Bi = total duration of blocking window i
Du,r = nominal track duration of request r for user u
fu = chosen instance of gx(i) for spacecraft u
gx(i) = score of instance x of partial aggregate path i
Ru = the total number of tracks requested by spacecraft u
r = index of individual spacecraft request
S = the total number of spacecraft being analyzed in a simulation
U = the total number of spacecraft in a block
u = index of spacecraft in a block

II. Introduction

Currently, NASA’s Deep Space Network (DSN) is responsible for uplink to, downlink from, and/or tracking of
dozens of missions in low Earth orbit (LEO), high Earth orbit (HEO), and Deep Space for space agencies across the

world. It consists of three complexes in Goldstone, CA, USA; Madrid, Spain; and Canberra, Australia, each containing
one 70-m and three or four 34-m parabolic dish antennas [1]. Based on the geographical placement of these sites, at
least one ground station is in view of a spacecraft at any given time [2]. The high demand for the DSN’s services results

∗Graduate Fellow, School of Electrical Engineering and Computer Science, 304 Electrical Engineering East
†Professor, School of Electrical Engineering and Computer Science, 313 Electrical Engineering East
‡Principal Scientist, Planning and Execution Systems Section, 4800 Oak Grove Dr.

1



in over-subscribed schedules, and users often have to accept less than their requested ground track times. The high cost
and long build timelines for new DSN ground sites make it ever more important to minimize overhead and maximize
site usage by optimizing each week’s track schedule—both with algorithms and manual tweaking.

The DSN scheduling process [3] starts about four months prior to the start of the schedule week when the mission
scheduling representatives enter their track requests into the Service Scheduling Software (S3) [4]. All user requests are
compiled into one master schedule by the DSN Scheduling Engine (DSE), which tries to deconflict as many requests as
possible given the flexibility (or lack thereof) in the various user requests. A “Builder of Proposal” (BOP), a human
scheduler, then takes the output schedule and modifies it based on the context of each mission, as well as previous
experience with the DSN schedule. The BOP generally eliminates hundreds of conflicts, but 10–20 conflicts generally
remain afterwards. At this point, mission representatives use a peer-to-peer negotiation process in order resolve the final
conflicts in the schedule, and then the schedule is baselined [5]. The process takes generally 2–3 weeks, so multiple
schedule weeks are being negotiated at any given time [6].

In 2019, the Exploration Mission 1 (EM-1) is scheduled to deploy the first wave of SmallSat missions that will
be serviced by the DSN. The details on which SmallSats being serviced are still being worked out, but upwards of
twelve require S-band/X-band DSN services. An additional 12 spacecraft would increase the DSN’s actively serviced
spacecraft by up to 30%, which would make scheduling even more difficult on the oversubscribed network. Unlike the
larger or “flagship” missions, such as Juno or Mars Science Laboratory (MSL), SmallSat teams do not have the resources
to individually provide mission representatives to work alongside the current scheduling team. Furthermore, even if the
SmallSat teams had the resources, adding such a large number of new mission users would be a major challenge to the
current lengthy proposal/counter-proposal peer-to-peer negotiation process. As a result, a new approach to scheduling
for the SmallSats needs to be developed in order to ensure they get adequate communications and tracking time [6].

In [6], the authors proposed two novel approaches for this issue: opportunistic gap scheduling and block scheduling.
Opportunistic gap scheduling consists of inserting SmallSat track time into the gaps in the DSN schedule. Gaps in the
schedule vary week by week depending on the spacecraft orbital trajectories and user requirements. Gaps tend to appear
when spacecraft are all lined up in a certain portion of the sky (rather than relatively-evenly spread out). Filling in
schedule gaps increases the network utilization without impacting existing mission schedules or scheduling processes,
making it an ideal solution for SmallSats. For an example using three current lunar missions as a proxy for the upcoming
SmallSats, there were very few gaps in the schedule that also aligned with the view periods of these SmallSats. Although
a good method for supplementing track time, opportunistic gap scheduling was found to be insufficient to meet even
modest scheduling demands.

Block scheduling consists of aggregating spacecraft together into larger “psuedo-spacecraft” that then follow the
same process as typical DSN missions to receive blocks of track time. These blocks are then decomposed into schedules
for the individual users based on their individual requirements. Unlike opportunistic gap scheduling, block scheduling
will have an impact on existing missions but is effective regardless of the week-by-week relative spacecraft positions in
the sky. However, block scheduling can help to lower overhead time attributed to setup and teardown—typically, 45 and
15 minutes, respectively. Overhead time includes both mechanical processes (e.g., slewing the antenna and powering
up transmitters/receivers) and software processes (e.g., loading and configuring link operator monitoring software).
A block as a whole would have one 45-minute setup time and 15-minute teardown time. When switching between
spacecraft in a block, the setup time is expected to be reduced to about 15 minutes because the overhead reduces to
mostly software processes. With many spacecraft in a block, significant overhead can be eliminated from the schedule.
The block scheduling method provides better promise for meeting the spacecraft requirements [6].

A third method suggested in handling SmallSats and further optimizing the DSN schedule, in general, is using
opportunistic multiple spacecraft per aperture (OMSPA) [7]. Multiple spacecraft per aperture (MSPA) is an existing
service (used for the Mars missions) in which one antenna is used to simultaneously support downlink for multiple
spacecraft those spacecraft that are within the same beam. Currently, four spacecraft can be downlinked simultaneously,
whereas only one uplink is supported at a time [8]. MSPA significantly lowers the cost per aperture by servicing multiple
spacecraft with the same aperture. The limitation with traditional MSPA, though, is the number of parallel receivers,
which can be very costly. Unlike MSPA, OMSPA uses a single digital recorder per station to record all of the IF signals
within the beam, which can then be demodulated/decoded in software at a later time. For missions in planetary orbits
at Mars or beyond, all spacecraft are within one beamwidth for essentially the entire year; this does not hold true for
lunar-orbiting spacecraft. OMSPA provides secondary spacecraft with more downlink opportunities if their spacecraft
passes through the beam of the actively-tracked primary spacecraft. Being an asynchronous service, it does not provide
uplink, real-time interactive, or two-way ranging support [7].

The work in [6] provided only a proof-of-concept for the blocking method. This paper considerably expands upon

2



the blocking method by describing a full novel scheduling toolset for building candidate spacecraft blocks, evaluating
the efficacy of these blocks, exporting these blocks to be scheduled into the master schedule, and then de-blocking the
allocated block tracks back into the individual user tracks. Building upon the work in [6, 7], this paper leverages the
developed toolset for exploring the blocking and OMSPA potential for the entire DSN catalog at large.

The following sections detail the development and analysis of the blocking algorithms. Section III provides general
implementation details and the libraries used. Section IV provides the details of the blocking and deblocking algorithms.
Section V provides simulations for blocking lunar SmallSats, blocking the entire DSN catalog, and OMSPA potential
for the entire DSN catalog. Section VI provides future work and conclusions based on the work presented in this paper.

III. Libraries Used
This toolset was written in Python 3. Python’s high-level development environment, large library support, and

ability to handle large computational problems were the primary reasons for the selection. Pinover et al.’s work [6]
was written in Javascript, which made it easy to develop a proof-of-concept simulation but clunky for scaling to large
problem sets and datasets. The following subsections highlight the main libraries (not including the stock Python
libraries) leveraged for this work.

A. SpiceyPy
Ephemeris files for DSN-supported spacecraft are available on the Service Preparation Subsystem (SPS) Webportal

[9] as SPICE Spacecraft and Planetary (SPK) kernels. The SPICE (Spacecraft, Planet, Instrument, Camera-matrix,
Events) Toolkit [10] is a powerful software package developed by NASA’s Navigation and Ancillary Information Facility
(NAIF) for analyzing geometric events and observations for any object with an ephemeris. NAIF provides the SPICE
Toolkit in C, Fortran, IDL, and MATLAB, but does not provide currently Python support [11]. SpiceyPy [12] is an
independent Python wrapper for the C SPICE Toolkit written by Andrew Annex. Being a wrapper, SpiceyPy provides
the ability to code in high-level Python but provides the performance gains from low-level C [12]. In this work, SpiceyPy
is used to calculate the ground station azimuth and elevation pointing angles towards the DSN-supported spacecraft.

B. Pandas, Selenium, and wget
To minimize the work required by the user, ephemeris files are automatically downloaded from the SPS Webportal.

In order to do this, Pandas (Python Data Analysis Library) [13], Selenium [14], and wget [15] are used in conjunction.
Selenium provides automated browser navigation, Pandas provides HTML parsing, and wget provides a mechanism to
download the ephemeris files.

C. SciPy
SciPy [16] includes NumPy [17]—the defacto standard for numerical arrays and matrices in Python—which was

used for array structures, array operations, and mathematical operations. SciPy also includes Matplotlib [18], which
provides a plotting API similar to MATLAB and was used for plotting schedules and intermediary results.

D. Dict to XML
Dict to XML [19] greatly simplifies the process of exporting data stored in a Python dictionary structure. This

library was leveraged for writing blocks and simulation parameters to XML files. These XML files can then be opened
with any XML reader for further parsing and filtering.

IV. Algorithms
The algorithms developed can be split into blocking and deblocking ones. The blocking algorithms acquire the

ephemeris files; calculate ground station pointing positions and filter by the blocking angle; shape the pseudo-spacecraft
requests to fit the valid blocking time windows and attempt to find a valid schedule; and then exports these blocks to
XML files for post-processing. The deblocking algorithms take in schedule-assigned block tracks and assigns individual
spacecraft to portions of these tracks by either maximizing the minimum user satisfaction or (sub-optimally) fitting
them to the track lengths. The blocking and deblocking algorithms are independent scripts and have no dependence on
each other, which makes them more applicable to other applications (such as OMSPA).

3



{Usr1,Usr2, Usr3}
A’123, B’123, C’123, …
{Usr1,Usr2, Usr3}

A’123, B’123, C’123, …

User1 Request
User1 Request

User1 Request
UserN Request

Year/Week/
Padding

Resolution

Angular 
Separation

Antennas

Intrablock 
Overhead

Nominal Track 
Time % Satisfied

User1 Request
SPICE Kernels

... Find All View 
Periods (∀ Sat 

Tuples >=2)

Filter View 
Periods by

Ang Separation

Shape Meta-
Request Sizes to 
Block Windows

Schedule Blocks 
with Loosening 
Requirements

Export Blocks to 
XML

{Usr1, Usr2}
A12, B12, C12, …

{Usr1, Usr3}
A13, B13, C13, …

{Usr2, Usr3}
A23, B23, C23, …

{Usr1,Usr2, Usr3}
A123, B123, C123, …

{Usr1, Usr2}
A12, B12, C12, …

{Usr1, Usr3}
A13, B13, C13, …

{Usr2, Usr3}
A23, B23, C23, …

{Usr1,Usr2, Usr3}
A123, B123, C123, …

{Usr1, Usr2}
A’12, B’12, C’12, …

{Usr1, Usr3}
A’13, B’13, C’13, …

{Usr2, Usr3}
A’23, B’23, C’23, …

{Usr1,Usr2, Usr3}
A’123, B’123, C’123, …

{Usr1, Usr2}
A’12, B’12, C’12, …

{Usr1, Usr3}
A’13, B’13, C’13, …

{Usr2, Usr3}
A’23, B’23, C’23, …

{Usr1,Usr2, Usr3}
A’123, B’123, C’123, …

R0 R1 R2 R3

U0

U1

U2

U3

U4

U5

U6

U7

U8

U9

350

–1  50 150 150

–2  200 200 200

–1  100 200 –1  

–1  –1  –3  0

–1  0 –1  -300

–1  50 50 –   

–1  –  –   –3  

–2  –2  –   –   

–2  –   –2  –3  

–3  –   –2  –   

450 550 650

350 450 550 650

400 500 600 0

300 400 500 0

500 600 700 0

450 550 650 0

400 500 600 0

300 400 500 0

500 600 700 0

450 550 650 0

{Usr1, Usr2}
A’12, B’12, C’12, …

Nominal Track 
Time % Satisfied

# of Antennas 
Required

# of Spacecraft 
Serviced

Schedule Exists

{Usr1, Usr2}
A’12, B’12, C’12, …

Nominal Track 
Time % Satisfied

# of Antennas 
Required

# of Spacecraft 
Serviced

Schedule Exists

Aggregated Block 
Time Windows

Aggregated User 
Request

NAIF 
SPICE

SPS 
Portal

Fig. 1 General flow block diagram of the blocking algorithm.

A. Blocking Algorithm
Figure 1 shows a block diagram of the spacecraft blocking algorithm. The first portion of this diagram is the user

inputs into the system, which can be classified into schedule timing, objects to be analyzed, and blocking parameters.
The schedule timing inputs include the starting week number and year, the number of weeks over which to iterate, the
schedule padding to include on each side of the week (e.g., an extra twelve hours on each side to account for tracks that
may carry over between week borders), and the scheduling time resolution (e.g., 15-minute resolution). The objects to
be analyzed include the spacecraft (both a list of the DSN abbreviation and the NAIF ID code) and the antennas to be
used in the analysis. The blocking parameters include the interblock overhead (i.e., setup and teardown time for the
entire track), intrablock time (i.e., overhead to switch between spacecraft within a block), a listing of fractions of the
nominal requested duration to be analyzed (e.g., 100%, 90%, 80%, 70%), and a minimum track time to be included as a
block track. The purpose of the minimum track time is to filter out very small track times where the overhead dominates
the track.

The blocking algorithm consists of four main steps: extracting pointing positions using SPICE and finding
combinations of spacecraft that are within the specified blocking angle, using the resulting blocking time windows to
find a sub-optimal solution of the best ordering of the requests to make aggregated requests, using a backtrack scheduling
algorithm to attempt to schedule the aggregated requests on every combination of specified antennas and at specified
fractions of the requested nominal track duration, and exporting the results to XML log files. The following subsections
provide more details on these functions.

1. Extracting Pointing Positions and Angular Filtering
With the spacecraft to be included in the blocking analysis provided by the user, the first step is determining the

appropriate ephemeris files required and downloading them from SPS WebPortal. Using Selenium’s automated browser
control, a browser is opened to the SPS WebPortal main homepage. Here, the user manually authenticates with their
appropriate user credentials. Once the user authenticates, they send a return to the Python script to notify that browser
is ready to be taken control of again. At this point, the Python script navigates to each spacecraft’s ephemeris page,
downloads the HTML table of ephemeris listing, parses it (using Pandas) for the newest and most accurate ephemeris
file(s) including the requested week(s), and then downloads the SPICE SPK file(s) (using wget).

With the ephemeris files downloaded, SPICE is called through the SpiceyPy wrapper to create position vectors in

4



{azimuth, elevation, range} tuples relative to each specified ground station of each spacecraft (at the specified schedule
time resolution). The function returns two dictionary data structures (with antenna numbers as the keys): a dictionary
containing Boolean array entries that indicate whether each spacecraft is in view at each time segment and a dictionary
containing the angular position of each spacecraft at each time segment relative to the specified antenna. The former
data structure is initially populated with all true values and is used for masking spacecraft and time segments when
doing any filtering. The latter data structure is used for calculating the angles between spacecraft.

The next step is to determine simple viewing periods (VPs) of each spacecraft by masking the VP array for only
when the elevation angle for each antenna is above a specified minimum elevation angle for each antenna. There is also
support for downloading the spacecraft VP files from SPS WebPortal if the user wants to account for lunar and planetary
occultations in the analysis. Now, for each possible grouping combination of spacecraft (from two spacecraft to the total
number of spacecraft analyzed), the centroid of their positions (relative to the ground antenna) is calculated for each
time segment. If the angular positions relative to the centroid falls within half the magnitude of the maximum blocking
angle, then that grouping of spacecraft can be potentially blocked for that time segment. Once every time segment in
a week is evaluated, it is converted into a “block” structure, which contains the spacecraft IDs, the ground antenna,
an array of every blocking time interval (greater than the minimum track time specified), and placeholders for block
metrics, such as total track duration. If the block does not have any time intervals greater than the minimum track time
specified, it is eliminated. Any block created at this point is considered potentially-blockable. It meets the angular
separation and minimum track-time requirements, but may or may not meet the user request requirements.

2. Greedy Algorithm for Request Shaping
Even with a small set of spacecraft like the DSN (roughly 30 active spacecraft), testing every combination of

spacecraft starts to explode combinatorically quickly. A stress test case would be finding blocking groups for all 34
active spacecraft on the DSN—this results in over one billion different groupings to test! Python’s itertools library
provides a way to iterate over all of these combinations without having to store the list of combinations in memory.
This prevents combinatoric memory explosion and allows for scaling to large problem sets. Two methods leveraging
simple set theory are used to drastically cut down the number of iterations tested. The first technique is that each set of
groupings to test is made up of the unions of every combination of two potentially-blockable groupings of size n − 1,
where 3 < n < S and S is the total number of spacecraft being analyzed. The union of every combination of two
spacecraft groupings can produce duplicates. If the duplicate grouping was already found to be potentially-blockable, it
is skipped. Unfortunately, if the duplicate grouping was not found to be potentially-blockable, it must be retested again
because only the listing of potentially-blockable groupings are stored in memory, not all groupings—otherwise, there
would be a memory explosion. Second, for all groupings of size n larger than two spacecraft, a spacecraft grouping is
only evaluated if every subset of n − 1 was found to be potentially-blockable.

After potential-blocks have been created based on VP and angular separation, these spacecraft groupings need
to be evaluated if they have blocking time windows that meet the conglomerate spacecraft duration and inter-request
gap-time requirements. For the general case, when missions request time on the DSN, their requests do not have order
dependence (as long as the gap-time requirements are met). This creates the problem of how to best combine requests
together into pseudo-spacecraft aggregated requests. Ideally, the requests should fit relative to the durations of the
blocking windows—depending on the orbits of the spacecraft in the grouping, the length of these blocking windows may
change throughout the week. Assuming that one aggregated request can have at most one request from each individual
spacecraft, the number of aggregated combination requests is [max(Ru)]!U , where Ru is the total number of tracks
spacecraft u is requesting and U is the total number of spacecraft in the block. As the number of users in the group
increases, the number of possible aggregated request combinations explodes exponentially. For relatively small groups,
say three spacecraft, it is reasonable to try every request. But, for a larger group of future CubeSats, say ten spacecraft,
each asking for up to 4 tracks per week, this results in 1,048,576 different combinations to test. This is infeasible when
there are hundreds or thousands of potential spacecraft groupings to be tested.

To combat this combinatoric explosion, a sub-optimal greedy algorithm was developed that converts the problem to
U[max(Ru)] combinations to try, which now scales linearly with the number of users. Figure 2 shows a diagram of the
algorithm. Along the horizontal axis are the request numbers (e.g., r = 0, 1, ..., 3). On the vertical axis are the spacecraft
users (e.g., u = 0, 1, ..., 9 andU = 9) where the users are sorted by the number of individual tracks requested in decreasing
order. Inside each node on a single row is the nominal duration requested for each request for that spacecraft. If a
spacecraft does not have max(Ru) requests, that request duration is 0. For example, for u = 0, the request durations are
400, 500, 600, and 0 units for requests r = 0, 1, 2, 3, respectively. Given the length of the four blocking windows that the

5



requests are trying to fit (e.g., B0 = 5000, B1 = 5000, B2 = 5000, B3 = 3000 units), each user is allocated Bi/U units of
the blocking window (e.g., B0/U = 500, B1/U = 500, B2/U = 500, B3/U = 300 units). There are max(Ru) aggregated
requests that need to be formed from the individual user requests. For each user, an aggregated request is assigned
up to one of each user’s requests, and no two aggregated requests can be assigned to the same individual user request.
The new aggregate score for path i for a particular instance of new aggregate paths including user u is calculated by

r=0 r=1 r=2 r=3

u=0

u=1

u=2

u=3

u=4

u=5

u=6

u=7

u=8

u=9

350

–150 50 150 150

–200 200 200 200

–100 100 200 –100

–100 –100 –300 0

–100 0 –100 -300

–150 50 50 –600

–150 –50 –450 –300

–250 –250 –450 –600

–250 –750 –250 –300

–300 –600 –200 –600

450 550 650

350 450 550 650

400 500 600 0

300 400 500 0

500 600 700 0

450 550 650 0

400 500 600 0

300 400 500 0

500 600 700 0

450 550 650 0

fn(0)

fn(1)

fn(2)

fn(3)

B0=5000
B1=5000
B2=5000
B3=3000

B0/U=500
B0/U=500
B0/U=500
B0/U=300

Fig. 2 Greedy algorithm example with 4 aggregate re-
quests and 10 users.

gx(i) = fu−1(i) − Bi/U + Du,r , (1)

where fn−1(i) is the old score for aggregate request i (prior
to adding user u), Bi/U is the allocated duration units per
user for aggregate request i, Du,r is the duration of request
r of user u, and x is the index of the particular instance
of new aggregate paths. For initialization, f−1(i) = 0 ∀ i.
After all new aggregate path scores have been computed,
the instance of paths chosen to add user u is the instance
x that has the smallest maximum aggregate path score, or

fu = gv , where v = argmin
x

{
max
i

gx(i)
}
. (2)

After iterating through all users, the max(Ru) resulting
aggregate paths are the assignments of user requirements
to aggregate requirements. This assignment is not optimal,
but provides a “good enough” solution for request shaping.

Implicitly, the greedy algorithm assumes that the
number of blocking windows available is exactly the same
as the number of aggregate requests required. If there are
more available blocking windows than aggregate requests,
then our algorithm takes max(Ru) representative sample
window durations. This is done by splitting the number
of windows into max(Ru) groupings and then taking the
median duration of each group.

3. Backtrack Scheduling
Once the spacecraft requests have been aggregated into

pseudo-spacecraft requests, the next step is to determine
if these requests can be satisfied by the blocking time
windows. A backtrack scheduling algorithm is used to
recursively attempt to find a valid schedule solution by incrementally building up partial solutions. The algorithm
finds the first time window when the first aggregated request fits into the schedule. If a time window is found, then the
algorithm adds the second aggregated request and finds the first location when this request fits in the schedule while
meeting the gap requirements. If a valid time window is found for the second request, the algorithm adds in the third
request, and so on. If a valid time window cannot be found for the second request, then the algorithm goes back to the
first request and finds the next valid time window. It then tries to schedule the second request again. This algorithm
continues until a valid schedule solution is found or the end of the schedule week is reached without a valid solution. If a
valid schedule is found, the grouping of spacecraft is considered “blockable”; otherwise, the grouping is “not blockable”.

Because the backtrack scheduling algorithm is scheduling the aggregated requests (and not the individual spacecraft
requests), the maximum runtime of the algorithm is bounded by the maximum number of requests by a single spacecraft.
As a result, this algorithm has the same maximum runtime bound regardless of the number of spacecraft in the
block—assuming the same maximum number of individual requests from a single spacecraft. The average runtime
may increase as more users are added because the probability of finding a valid schedule (and exiting the backtracking
algorithm early) decreases as the durations of the aggregated requests increase.

The output of the backtracking algorithm is simply a Boolean value: a schedule does or does not exist for the block.
Where the requests were scheduled into the blocking time windows is not important. The purpose of the algorithm
is to identify spacecraft groupings that can be blocked together. The scheduling algorithm in the Service Scheduling

6



User1 Request
User1 Request

User1 Request
UserN Request

Year/Week/
Padding

Antennas

Intrablock 
Overhead

A
Allocated Track

..
.

Deblock by 
Maximizing the 
Minimum User 

Satisfaction

Output/Export 
Schedule

Deblocked 
Schedule

R0 R1 R2 R3

U0

U1

U2

U3

U4

U5

U6

U7

U8

U9

350

–   50 150 150

–   200 200 200

–   100 200 –   

–   –   –   0

–   0 –   -300

–   50 50 –   

–   –  –   –   

–   –   –   –   

–   –   –   –   

–   –   –   –   

450 550 650

350 450 550 650

400 500 600 0

300 400 500 0

500 600 700 0

450 550 650 0

400 500 600 0

300 400 500 0

500 600 700 0

450 550 650 0

Shrink Schedule 
to Fit Within 

Allocated Tracks

Fig. 3 General flow block diagram of the deblocking algorithm.

Subsystem (SSS) is responsible for scheduling this block into the master DSN schedule, as it takes into account all of
other spacecraft in the DSN requesting tracking time.

Because the output of the backtracking algorithm is simply a schedule existence Boolean, it does not give any
information on how the requirements could be loosened in order to make the spacecraft grouping be blockable or how
the requirements could be tightened and still keep a spacecraft grouping to be blockable. To determine this information,
the backtracking algorithm is run through a series of iterations with modified inputs. Specifically, the algorithm iterates
through fractions of the aggregate request nominal track duration used (e.g., 100%, 90%, 80%, 70%) and every possible
grouping of antennas specified (from a single antenna to all antennas). This produces a Boolean table for each potential
block. This table can be useful to identify what resources are required for a potential block to be blockable at a certain
level of user satisfaction. The BOP and mission scheduling team can also use this table to know the impact of changing
a block’s request duration when manually fixing conflicts in the full DSN schedule.

4. Exporting to XML
At the end of the blocking process, the attributes of blocks are exported to XML to be used with scheduling in SSS.

These attributes include the blocking time windows (to be imported as the VPs in SSS) and the aggregate requests of the
block. The goal of this software is to have a seamless integration with SSS—at the time of writing, all of the necessary
interfaces are still being developed.

B. Deblocking Algorithm
There are two main ways of deblocking. For smaller groupings of spacecraft, an optimal brute force optimization

scheme can be used in which the minimum user satisfaction is maximized. For any size groupings of spacecraft, the
greedy algorithm described in Section IV.A.2 can be used to deblock by fitting (suboptimally) aggregate request sizes to
the assigned track times. A block diagram of the deblocking process is shown in Figure 3.

1. Brute Force Maximization of Minimum User Satisfaction
For small groupings of spacecraft, a brute force optimization will find the globally optimal solution in a reasonable

amount of time for any user satisfaction criteria. User satisfaction is defined as the ratio of total schedule time allocated
to the spacecraft to the total schedule time requested. Through experimentation and analysis, maximizing the minimum
user satisfaction was found to be the “most fair” goal. Using realistic problem sets, maximizing the mean user satisfaction
often resulted in a large disparity between the most satisfied and least satisfied users. For example, three of four users

7



Table 1 Lunar SmallSat mission requirements derived from submitted ULPs.

CuSP BIOS MLI
Number of Tracks 1 2 3
Earliest Start 0 0 0
Latest End inf inf inf
Track Duration Min 0 hr 0 hr 0 hr
Track Duration Nominal 4 hr 2 hr 3 hr
Minimum Gap Time 1 day 1 day 1 day
Maximum Gap Time 5 days 5 days 5 days
Ephemeris LRO THB THC

could have high satisfaction (e.g., 94%, 95%, 95.5%), whereas one user could be left with a low satisfaction (e.g., 30%).
The mean satisfaction would be relatively high (e.g., 78.6%), which masks the fact that one user’s requirements are not
being satisfied well. Maximizing the minimum satisfaction implicitly creates a more equal prioritization.

The brute force algorithm traverses through every possible assignment of individual requests in the given track
periods and calculates the minimum user satisfaction. As more users are added to a block, the number of potential
schedule solutions explodes combinatorically. If runtime duration is not a major issue, this method could be used for
medium group sizes of spacecraft.

2. Greedy Algorithm for Deblocking
If the brute force algorithm is unwieldy for the number of spacecraft in a block, the greedy algorithm described in

Section IV.A.2 can be used. By attempting to minimize the maximum aggregated request score during each iteration
(traversing through the list of spacecraft), the algorithm minimizes the worst-case shrinking that will occur to fit the
aggregated request into allocated track time. Minimizing the maximum request shrinkage is equivalent to maximizing the
minimum user satisfaction. This is because a user satisfaction less than 100% is due to the fact that the request duration
is shrinking in order to fit into the allocated track time. Although suboptimal, the greedy algorithm is advantageous in
scaling up linearly rather than exponentially as the number of users in a block increase.

3. Exporting to Text
The output of the core deblocking algorithms is the assignments of individual spacecraft requests to the allocated

tracks. At the time of writing, the final step in deblocking is exporting the schedule (including setup, teardown, and
intrablock overhead time) to a human-readable text file. When the deblocking software is integrated with SSS, it will
modify the master DSN schedule in SSS to show the individual spacecraft in the time periods allocated for the block.

V. Simulations
To illustrate the versatility of the developed blocking and deblocking toolset, three simulations are presented in the

following sections. The first simulation demonstrates the originally intended purpose of the software: blocking and
deblocking SmallSats. The second and third simulations explore the potential for blocking and OMSPA, respectively,
for the entire DSN spacecraft catalog over an entire year.

A. Sample Lunar Blocking Example
This simulation scenario explores the blocking potential for three of the SmallSats (Cubesat for Solar Particles

(CuSP), BioSentinel (BIOS), Morehead Lunar Ice Cube (MLI)) to be deployed into orbit during EM-1. Table 1 shows
the preliminarily-requested tracking requirements for the three spacecraft from a typical schedule week in their submitted
user loading profiles (ULPs). Each spacecraft has different nominal track times and a different number of tracks. ULPs
do not include gap times, so we make the assumption that the missions want their track times to be spaced out throughout
the week. This is realized by a minimum and maximum gap times between tracks of one day and five days, respectively.

8



[‘CuSP’, ‘BIOS’]

[‘CuSP’, ‘LIC’]

[‘BIOS’, ‘LIC’]

[‘CuSP’, ‘BIOS’, 

‘LIC’]

Fig. 4 Blocking time windows for all combinations of BIOS, CuSP, and MLI for Week 37 of 2017 for DSS-24
(red), DSS-34 (blue), and DSS-54 (green).

Because the expected launch date of EM-1 has slipped to December 2019, the full set of user request requirements
(which would include gap time) is not currently available at the time of writing. For the same reason, the ephemerides
for these SmallSats are not available yet. As a result, we use the ephemerides of Lunar Reconnaisance Orbiter (LRO),
Themis B (THB), and Themis C (THC) from Week 37 of 2017 for CuSP, BioSentinel, and Lunar Ice Cube, respectively.
LRO, THB, and THC are the same lunar proxy spacecraft used by Pinover et al. in [6]. We limit the SmallSats to be
scheduled only on the 34-m Beam Waveguide 1 (BWG1) antenna at each DSN complex, which corresponds to DSS-24
(Goldstone), DSS-34 (Canberra), and DSS-54 (Madrid). During the blocking algorithm, we wish to explore blocking
potential using 70%, 80%, 90%, and 100% of the requested nominal duration.

Running the blocking algorithms with these inputs, the potential blocking time windows for each combination of
spacecraft grouping is shown in Fig. 4. The red, blue, and green bars represent the time in which the three spacecraft are
within the blocking angle (±2.5°) of their pointing position centroid for DSS-24, DSS-34, and DSS-54, respectively.
Between the three antennas, these spacecraft are always in view within the blocking angle. The four groupings of
spacecraft listed are the four blocks that the blocking algorithm will investigate for blocking potential using the greedy
and backtrack algorithms.

Table 2 shows the results of the backtrack algorithm. We can see that the grouping of all three spacecraft (along
with every grouping of two spacecraft) is blockable using their originally requested nominal durations (and, thus, any
fraction of this duration) and using any one antenna (and, thus, any grouping of antennas). Focusing on the block using
all three antennas with 100% nominal track time, the aggregated nominal track requests are for 9.5, 5.25, and 3.0 hr,
respectively (which includes 15-minute overhead time periods between spacecraft). This information along with the gap
times and blocking time windows would then be imported into SSS and scheduled. The resulting track times would then
be negotiated by the mission teams through the peer-to-peer service.

For the case of this example, let us assume that the three track times were negotiated to 427.5, 252.0, and 153.0
minutes from the originally requested 570.0, 315.0, and 180.0 minutes. These track times and the original user
requirements are then fed into the deblocking algorithm using the greedy, suboptimal approach. Figure 5 shows the
resulting deblocked schedule including setup, teardown, and intra-block overhead. The setup and teardown time is
added outside of the blocking periods as the spacecraft do not need to be in view for these activities to occur. Using
this deblocking method, the user satisfaction for THB, THC, and LRO were calculated to be 76%, 79%, and 73%,
respectively. The low variance and high minimum satisfaction indicates a good solution.

B. Blocking Analysis on All Active DSN Spacecraft
Although the tool was originally intended for blocking SmallSat missions together, it can also be used to explore the

blocking potential for the entire DSN spacecraft catalog. A simulation was set up to iterate from Week 33, 2017 through
Week 33, 2018 with a ±2.5° blocking angle for 34 of the active spacecraft using the DSN with available ephemerides.
These missions range from lunar missions to beyond the edge of the solar system. Antennas DSS-24, DSS-34, and

9



Table 2 Blocking analysis for BIOS, CuSP,MLI using DSS-24, DSS-34, and DSS-54 and analyzing 100%, 90%,
80%, and 70% of the requested nominal track duration.

Antenna Nominal Duration % Schedule Exists
{CuSP, BIOS, MLI} {CuSP, BIOS} {CuSP, MLI} {BIOS, MLI}

{24} 100% TRUE TRUE TRUE TRUE
{24} 90% TRUE TRUE TRUE TRUE
{24} 80% TRUE TRUE TRUE TRUE
{24} 70% TRUE TRUE TRUE TRUE
{34} 100% TRUE TRUE TRUE TRUE
{34} 90% TRUE TRUE TRUE TRUE
{34} 80% TRUE TRUE TRUE TRUE
{34} 70% TRUE TRUE TRUE TRUE
{54} 100% TRUE TRUE TRUE TRUE
{54} 90% TRUE TRUE TRUE TRUE
{54} 80% TRUE TRUE TRUE TRUE
{54} 70% TRUE TRUE TRUE TRUE

{24, 34} 100% TRUE TRUE TRUE TRUE
{24, 34} 90% TRUE TRUE TRUE TRUE
{24, 34} 80% TRUE TRUE TRUE TRUE
{24, 34} 70% TRUE TRUE TRUE TRUE
{24, 54} 100% TRUE TRUE TRUE TRUE
{24, 54} 90% TRUE TRUE TRUE TRUE
{24, 54} 80% TRUE TRUE TRUE TRUE
{24, 54} 70% TRUE TRUE TRUE TRUE
{34, 54} 100% TRUE TRUE TRUE TRUE
{34, 54} 90% TRUE TRUE TRUE TRUE
{34, 54} 80% TRUE TRUE TRUE TRUE
{34, 54} 70% TRUE TRUE TRUE TRUE

{24, 34, 54} 100% TRUE TRUE TRUE TRUE
{24, 34, 54} 90% TRUE TRUE TRUE TRUE
{24, 34, 54} 80% TRUE TRUE TRUE TRUE
{24, 34, 54} 70% TRUE TRUE TRUE TRUE

10



Setup BIOS I MLI I CuSP T

Setup BIOS I MLI T

Setup MLI T

570 min

315 min

180 minTrack 2

Track 1

Track 0

Fig. 5 Example deblocked schedules for BIOS, CuSP, and MLI. “Setup”, “I”, and “T” indicate setup time,
intrablock overhead, and teardown time, respectively. The white bar indicates the extra track time requested
but eliminated during the SSS scheduling and negotiation process.

DSS-54 were included in the analysis to provide a representative sample at each DSN complex. Any passes less than
one hour were eliminated from a block. Because the blocking tool does not compute the link budget, it did not matter if
a 34-m or 70-m antenna was chosen. To run through an entire schedule year (one week at a time), the simulation took
approximately 7 hours on one logical core of an Intel Sandy Bridge i5 processor. Depending on the positions of the
spacecraft in the sky, the time it takes to simulate one week is variable. When many spacecraft are located in the same
part of sky, the simulation will take significantly longer because of a combinatoric explosion of possible groupings of
spacecraft to test. With access to a large amount of processor cores, this simulation time could be reduced by running
all of the weeks in parallel.

Table 3 shows a filtered selection of the spacecraft groupings that have the highest blocking potential—these
spacecraft met the blocking angle requirement for a significant duration of time throughout the year. This analysis only
explores the geometric alignment of the spacecraft; it does not take into account the individual spacecraft frequency
band(s) or requirements. The resulting block database containing 7,858 blocks (an individual block is associated with a
single antenna) was first filtered to only include passes in each block that are at least 8 hours in duration. This lowered
the block count to 6,164. For a grouping of two spacecraft, this would give each spacecraft at least about 4 hours of track
time. Spacecraft groupings whose superset is also a block and has the same number of passes were eliminated. This
lowered the block count to 1,381 blocks. Of these 1,381 blocks, there were 495 unique spacecraft groupings (combining
the antennas together).

The first column of Table 3 shows the spacecraft grouping. The second column shows the total duration of when
these spacecraft are within the blocking angle across all three DSN complexes calculated only from passes that are
at least 8 hours long. This total duration does not double count the time periods in which the spacecraft grouping is
visible by two DSN complexes simultaneously. The third column shows the antenna for each spacecraft grouping with
the largest number of passes (fourth column). The total duration metric is good for preliminarily identifying useful
blocks, whereas the number of passes provides a more relevant number for the number of passes that could benefit from
blocking.

At the top of the list are the expected groupings of spacecraft: the Mars, lunar, and Magnetospheric Multiscale
(MMS) missions. The Mars missions already take advantage of their close proximity by using MSPA. The MMS
missions are the only DSN spacecraft with the capability of being blocked today. As the LRO, THB, and THC missions
were used as proxies for the SmallSat analysis, these were an obvious result of the analysis. Moving down the list reveals
more interesting (and unexpected) potential blocking groupings, such as the Solar-Terrestrial Relations Observatory
Ahead (STA) and the Spitzer Space Telescope (STF). These two spacecraft are within the blocking angle for over 4,100
hours in a year, which corresponds to 170 passes with at least 8-hour durations on DSS-24 alone. As shown in the table,
there is a significant potential for blocking. Further analysis will be conducted on how many of these passes would meet
user requirements. For a full listing of the DSN spacecraft and their abbreviations, see Ref. [20].

C. OMSPA Analysis on All Active DSN Spacecraft
While blocking can save track time by eliminating much of the overhead time for each spacecraft, OMPSA provides

a much larger benefit as spacecraft can downlink simultaneously to a DSN site. Like the blocking analysis, an entire
schedule year was simulated from Week 33, 2017 through Week 33, 2018. DSS-24, DSS-34, and DSS-54 antennas
were used for coverage from all three complexes. Instead of the blocking angle, the half-power beamwidth of these
antennas for S-band (±0.1315°), X-band (±0.0385°), and Ka-band (±0.0080°) were used [21]. The same 34 active
DSN-supported spacecraft were included in the analysis. With the same setup as with the previous section, each
simulation (S-band, X-band, and Ka-band) took approximately 3 hours to complete.

11



Table 3 Selected blocking time window analysis (using ±2.5◦) for 34 active DSN-supported spacecraft from
Week 29, 2017 through Week 29, 2018.

Spacecraft Grouping Total Duration of Antenna with Number of
Blocking Windows (hr) Most Passes Passes

{M01O, MVN, MEX, MOM, MRO, MSL} 9055.25 54 378
{LRO, THB, THC} 8999.00 54 358
{MMS1, MMS2} 8714.75 54 329
{MMS3, MMS4} 8692.00 54 328

{STA, STF} 4100.25 24 170
{MMS1, MMS2, MMS3, MMS4} 2649.00 24 98

{WIND, HYB2} 1473.50 34 62
{STA, PLC} 1096.25 54 45
{SOHO, STA} 1058.00 24 45
{STF, PLC} 1003.75 54 42
{STB, PLC} 981.25 24 40

{WIND, DSCO} 950.00 24 39
{WIND, PLC} 858.75 24 36
{WIND, STB} 753.25 24 32
{STF, HYB2} 725.00 24 30

{STA, STF, PLC} 692.00 24 28
{MER1, STB} 658.25 24 27
{SOHO, WIND} 575.50 24 25
{M01O, JNO} 516.00 24 21

Table 4 shows the potential OMPSA results for S-band with a minimum pass time requirement of 6 hours. The
table is filtered to only show missions with S-band transceivers. The two Mars missions supporting S-band have the
highest total duration. The pairs of MMS missions also have a significant amount of time that could support OMSPA.
Unfortunately, all four MMS missions use the same carrier frequency, so they cannot support (O)MSPA. At X-band and
Ka-band (not shown in the table), only the Mars missions fall within the half-power beamwidth for the minimum 6-hour
passes. In other words, OMPSA will not greatly benefit the current DSN missions at S-band, X-band, or Ka-band
(besides the Mars missions).

Table 4 OMSPA time window analysis (using ±0.1315◦) for 34 active DSN-supported spacecraft from Week
29, 2017 through Week 29, 2018. This table is filtered to only show spacecraft that have S-band transceivers.

Spacecraft Grouping Total Duration of Antenna with Number of
Blocking Windows (hr) Most Passes Passes

{MEX, MOM} 9066.25 54 379
{MMS1, MMS2} 8746.00 54 342
{MMS3, MMS4} 8646.25 54 341

{MMS1, MMS2, MMS3, MMS4} 1757.25 54 71

12



VI. Conclusion
Block scheduling has the potential to reduce overhead and scheduling resources for the EM-1 SmallSats while also

providing them with a better means to meet their mission requirements. The blocking algorithms described in this paper
find groupings of spacecraft within the specified blocking angle, combine their individual requests to match the shape of
the blocking time windows, attempt to schedule their aggregated requests across the specified antennas, and relax the
nominal track duration to identify scheduling potential. Once the track times for the blocks have been negotiated through
the standard DSN process, an optimal or suboptimal deblocking strategy can be used to break up the allocated block
tracks into individual scheduled tracks by maximizing the minimum user satisfaction. An example lunar simulation with
SmallSat requirements was presented demonstrating the feasibility of blocking. Additionally, the blocking algorithm
was applied to the entire DSN spacecraft catalog in order to identify blocking and OMPSA potential for other missions.
Although the current DSN spacecraft did not show high potential for OMPSA, blocking may be able to save a significant
amount of overhead. With the algorithms developed and tested, future work includes integrating the Python application
with the SSS software and running the algorithms with all of the SmallSat ephemerides (once available).

Acknowledgments
This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract

with the National Aeronautics and Space Administration. This work was also supported by a NASA Space Technology
Research Fellowship (grant number NNX15AQ41H).

References
[1] “Deep Space Network,” Online, 2018. Available at http://deepspace.jpl.nasa.gov.

[2] Imbriale, W. A., “Large Antennas of the Deep Space Network,” Deep-space Communications and Navigation Series, edited by
J. H. Yuen, Monograph 4, Jet Propulsion Laboratory, 2002, pp. 1–298.

[3] Johnston, M. D., Tran, D., Arroyo, B., Sorensen, S., Tay, P., Carruth, B., Coffman, A., and Wallace, M., “Automated Scheduling
for NASA’s Deep Space Networks,” AI Magazine, Vol. 35, No. 4, 2014, pp. 7–25.

[4] Johnston, M. D., Tran, D., Arroyo, B., Sorensen, S., Tay, P., Carruth, J., Coffman, A., and Wallace, M., “Automating Mid- and
Long-Range Scheduling for NASA’s Deep Space Network,” SpaceOps 2012 Conference, 2012, pp. 1–12.

[5] Carruth, J., Johnston, M. D., Coffman, A., Wallace, M., Arroyo, B., and Malhotra, S., “A Collaborative Scheduling Environment
for NASA’s Deep Space Network,” SpaceOps 2010 Conference, 2010, pp. 1–12.

[6] Pinover, K., Johnston, M. D., and Lee, C., “Optimizing SmallSat Scheduling for NASA’s Deep Space Network,” International
Workshop on Planning and Scheduling for Space (IWPSS), 2017, pp. 124–132.

[7] Wyatt, E. J., Abraham, D., Johnston, M., Bowman, A., and Malphrus, B., “Emerging Techniques for Deep Space CubeSat
Operations,” 5th Interplanetary CubeSat Workshop, 2016, pp. 1–17.

[8] Waldherr, S., “DSN Mission Support Definition and Commitments,” CubeSat Technical Interchange Meeting, 2016.

[9] “Service Preparation Subsystem Portal,” Online, 2018. Available at https://spsweb.fltops.jpl.nasa.gov/.

[10] Acton, C., “SPICE: An Observation Geometry System for Space Science Missions,” Online, 2018. Available at https:
//naif.jpl.nasa.gov/naif/index.html.

[11] “An Overview of SPICE,” Online, 2018. Available at https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/
Tutorials/pdf/individual_docs/03_spice_overview.pdf.

[12] Annex, A., “SpiceyPy: The NASA JPL NAIF SPICE Toolkit Wrapper Written in Python,” Online, 2018. Available at
https://github.com/AndrewAnnex/SpiceyPy.

[13] McKinney, W., “Pandas: Python Data Analysis Library,” Online, 2018. Available at https://pandas.pydata.org/.

[14] Muthukadan, B., “Selenium with Python,” Online, 2018. Available at http://selenium-python.readthedocs.io/.

[15] Techtonik, A., “Wget: Pure Python Download Utility,” Online, 2015. Available at https://pypi.python.org/pypi/wget.

[16] “SciPy: Scientific Computing Tools for Python,” Online, 2018. Available at https://www.scipy.org/.

13

http://deepspace.jpl.nasa.gov
https://spsweb.fltops.jpl.nasa.gov/
https://naif.jpl.nasa.gov/naif/index.html
https://naif.jpl.nasa.gov/naif/index.html
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/03_spice_overview.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/03_spice_overview.pdf
https://github.com/AndrewAnnex/SpiceyPy
https://pandas.pydata.org/
http://selenium-python.readthedocs.io/
https://pypi.python.org/pypi/wget
https://www.scipy.org/


[17] “NumPy,” Online, 2017. Available at http://www.numpy.org/index.html.

[18] “Matplotlib,” Online, 2017. Available at https://matplotlib.org/.

[19] McGreal, R., “Dict To XML,” Online, 2016. Available at https://pypi.python.org/pypi/dicttoxml.

[20] “DSN Current Mission Set,” Online, 2017. Available at https://deepspace.jpl.nasa.gov/files/
DSNCurrentMissionSetMar82017.pdf.

[21] Chang, C., DSN Telecommunications Link Design Handbook, Jet Propulsion Laboratory, 2015.

14

http://www.numpy.org/index.html
https://matplotlib.org/
https://pypi.python.org/pypi/dicttoxml
https://deepspace.jpl.nasa.gov/files/DSNCurrentMissionSetMar82017.pdf
https://deepspace.jpl.nasa.gov/files/DSNCurrentMissionSetMar82017.pdf

	Nomenclature
	Introduction
	Libraries Used
	SpiceyPy
	Pandas, Selenium, and wget
	SciPy
	Dict to XML

	Algorithms
	Blocking Algorithm
	Extracting Pointing Positions and Angular Filtering
	Greedy Algorithm for Request Shaping
	Backtrack Scheduling
	Exporting to XML

	Deblocking Algorithm
	Brute Force Maximization of Minimum User Satisfaction
	Greedy Algorithm for Deblocking
	Exporting to Text


	Simulations
	Sample Lunar Blocking Example
	Blocking Analysis on All Active DSN Spacecraft
	OMSPA Analysis on All Active DSN Spacecraft

	Conclusion

